3.3生物方法
3.3.1基本原理和特点
生物方法从20世纪80年代开始研究,实际上是利用细菌或真菌浸取贵金属,目前还未应用到实际生产中。其基本原理是利用微生物细胞及其代谢产物,通过物理、化学作用(包括络合、沉淀、氧化还原、离子交换等)吸附贵金属。
该方法技术简单,费用低,操作方便,主要缺陷是浸取时间长,浸取率低,但代表着未来的技术发展方向。
3.3.2处理工艺
国外有学者采用生物浸出方法从电子废物中回收贵金属,试验采用的培养基为硫杆菌、氧化铁硫杆菌、黑曲霉、青曲霉。
1998年地质矿产部矿业生物工程研究中心的熊英等[18]进行了生物制剂浸Au性能的研究。他们选用富含蛋白质的食品工业下脚料,经水解改性以后,制备成生物浸Au制剂。结果表明,在选择的条件下,生物浸Au制剂对氧化型金矿石Au的浸出率大于95%。
4电子废弃物中贵金属的回收工艺流程简介
4.1瑞典
瑞典Scandinavian Recycling AB(SR-AB)公司在20世纪80年代就开始着手研究和开发电子废弃物的机械处理技术和设备。该公司关于电子废弃物处理的基本流程(见图2)涵盖了目前机械处理的基本方法,包括拆卸、破碎、分选等过程,不需要考虑产品干燥和污泥处置等问题,符合当前市场要求,还可以在设计阶段将可回收再利用的性能融入产品中,因此具有一定的优越性[19]。但该流程实际上忽略了分选后物料的后续处理问题,如冶炼、湿法冶金等。所以,称其为组分的富集或分离技术更合理。
图2瑞典SR-AB公司回收电子废弃物中贵金属的基本流程
4.2德国
德国的Daimler Benz Ulm研究中心开发了四段式处理工艺处理经拆卸后的废电路板:预破碎、液氮冷冻后粉碎、分类、静电分选,具体工艺流程见图3。值得指出的是该研究中心研制了一种分离金属和塑料的电分选机,在控制的条件下可以分离尺寸小于0.1 mm的颗粒,甚至可以从粉尘中回收贵金属。
图3德国Daimler Benz Ulm研究中心开发的废弃电路板处理工艺
4.3加拿大
加拿大Noranda公司回收电子废弃物中贵金属的流程见图4[20]。先通过高温使金属和杂质分离,然后通过几个相应的加工流程来提炼各种金属。电子废弃物中的Au,Ag,Pt,Pd等贵金属一般通过炼铜炉加工回收。
图4加拿大Noranda公司贵金属回收过程示意
5结语
随着电子工业和经济的不断发展以及电子产品更新换代速度的加快,作为生产原料之一的贵金属的消耗量越来越大。随着报废电子产品的增多,加之电子废弃物处理困难,回收利用率不高,大量含有贵金属的电子废弃物未能有效的回收利用,不仅造成严重的环境污染,还导致大量宝贵资源的浪费。因此,要加强防治电子垃圾污染的立法意识[21],科学、合理、高效的回收利用电子废弃物中的贵金属,这样不仅可以达到节约资源能源、降低生产成本、减少废弃物排放量和保护环境的目的,而且对于促进我国循环经济的发展,顺利实现我国的可持续发展具有长远而深刻的意义。
电子废弃物中贵金属的回收工艺分为前处理和后续处理两个阶段。前处理主要指机械处理方法,包括拆解、破碎、分选等过程;后续处理包括火法冶金、湿法冶金和生物方法等。发达国家早在20世纪70年代就开始着手研究从电子废弃物中回收贵金属的技术。我国对电子废弃物中贵金属的回收利用还处于起步阶段,机械处理法多是人工拆卸和手工操作,没有大面积实现机械化自动化统一处理;而湿法冶金大多数还处于实验室研究阶段。
参考文献略