从成分分析来看,PCB总金属平均含量高达43.58%,除了占据金属总量一半以上的铜以外,基板上大量铅锡焊料和金属插脚(锌、铝等),以及黑色金属和少量贵金属金、银等都具有较高的回收价值。由于物理机械性能的差异,金属在各粒级的分布情况不尽相同。以铜为代表的金属,延展性好,在冲击力、挤压等作用下,易发生弯曲,较难断裂,在粉碎过程中趋向于较粗粒级产品分布。如铜集中在0.125~0.3mm、0.3~0.5mm、0.5~0.8mm三个粒级。焊剂主要材料铅、锡等金属,性脆易碎,在0.125mm以下的物料中含量较高。非金属树脂和玻璃纤维等物质在锤头高速冲击下发生断裂被击碎,粉碎后的物料在常温下也属于易脆易碎物质[10],集中分布在细粒级中。综上所述,PCB在锤头高速冲击作用下,发生选择性破碎,使得多数金属在较粗级别富集,为后续分选工艺提供了良好的进料条件。
2.2气流分选
气流分选是利用颗粒在气流中沉降的速度差或运动轨迹的不同而进行分离的过程。PCB破碎产物中铜、铅、锡等主要金属的密度(7.0~11.0g/cm2)远大于树脂和玻璃纤维等非金属的密度(1.4~2.5g/cm2),因此在垂直上升气流作用下,金属与非金属颗粒的沉降速度存在较大差异,容易实现富集分离。
颗粒沉降速度的大小与颗粒粒度、密度及形状等因素有关。在同一介质中,会出现密度、粒径、形状不同的颗粒具有相同沉降速度的等降现象,相应的颗粒称为等降颗粒,密度小的颗粒粒度与密度大的颗粒粒度之比称为等降比,以e表示。球形颗粒在不同雷诺数范围内的等降比为[11]:

n在层流区、过渡区和牛顿区的值分别为0.5、0.67和1.0;ρ0,ρ1,ρ2分别为流体介质和小、大颗粒的密度。e值随颗粒粒度变细而减小,在等降比范围内,物料按颗粒密度可以得到有效分选[12-13]。
PCB的粉碎产物粒度分布较宽,为了提高分选效率,在分选前需要将物料进行窄分级,实现按密度差异为主导的分选。研究体系中理论最小等降比值(以主要成分铜、树脂纤维玻璃的密度值计算)约2.0~2.5。本研究筛分物料粒级基本满足上述要求,综合考虑金属解离程度和物料性质等因素影响,选取粒径<1.0mm的六个粒级物料作为实验物料,参考铜颗粒和非金属颗粒在空气中的沉降规律,得到气流分选结果如表2所示。
表2废PCB粉碎物料的气流分选结果

由分选结果可知:气流分选废PCB粉碎物料,不仅能得到品位较高的金属富集体,而且金属富集产品产率可观。本实验条件下,调节合适的操作气速,0.125~0.1mm中铜的回收率接近95%,90%以上的金属被回收。0.074~0.125mm的物料,原料颗粒粒度小且金属含量较低,气速操作弹性有所减小,金属回收率降低,但富集效果比较明显,分选前后金属富集比接近6。<0.074mm的物料气流分选,不仅金属回收率低而且富集效果不明显。原因一是因为颗粒变细,沉降速度越慢,轻、重组分的沉降速度差越小,短时间在有限装置内很难分离。二是此细粒级物料以玻璃纤维和树脂为主,物料和装置壁间的静电效应以及物料间相互团聚都会使部分非金属颗粒不能被分选出去。因此气流分选比较适合粒径>0.074mm的物料分选,<0.074mm的物料更适合离心分选或摇床分选富集金属,以达到提高金属回收率、减少废渣的排放量的目的。
3结论
(1)废PCB在锤式破碎机作用下发生选择性破碎,金属在0.8mm以下基本解离,79.65%的金属分布在0.125~1.0mm粒级中,物料过粗和过碎现象较轻,得到适合气流分选的物料。
(2)利用金属和非金属间显著密度差异,采用气流分选技术回收0.125~1.0mm粒级物料中金属,总金属回收率超过90%。
干法冲击破碎+气流分选工艺处理废弃线路板,设备简单,操作方便,环境污染小,能实现金属和非金属的高效清洁分离,是一种环境友好、经济可行的物理回收技术,具有较强的适用性。
[参考文献]略